4g phone jammer network - jammer network connections new

4g phone jammer network - jammer network connections new

  • Post Author:UPX42_1e6ugW@gmail.com

An alternative tool for detecting underground nuclear explosions? By Dorota A. Grejner-Brzezinska, Jihye Park, Joseph Helmboldt,  Ralph R. B. von Frese, Thomas Wilson, and Jade Morton Well-concealed underground nuclear explosions may go undetected by International Monitoring System sensors. An independent technique of detection and verification may be offered by GPS-based analysis of local traveling ionospheric disturbances excited by an explosion. Most of the work to date has been at the research demonstration stage; however, operational capability is possible, based on the worldwide GPS network of permanently tracking receivers. This article discusses a case study of detecting underground nuclear explosions using observations from GPS tracking stations and the Very Large Array radio telescope in New Mexico. More than 2,000 nuclear tests were carried out between 1945 and 1996, when the Comprehensive Nuclear Test Ban Treaty was adopted by the United Nations General Assembly. Signatory countries and the number of tests conducted by each country are the United States (1000+), the Soviet Union (700+), France (200+), the United Kingdom, and China (45 each). Three countries have broken the de facto moratorium and tested nuclear weapons since 1996: India and Pakistan in 1998 (two tests each), and the Democratic People’s Republic of Korea (DPRK) in 2006 and 2009, and most recently, in 2013. To date, 183 countries have signed the treaty. Of those, 159 countries have also ratified the treaty, including three nuclear weapon states: France, the Russian Federation, and the United Kingdom. However, before the treaty can enter into force, 44 specific nuclear-technology-holder countries must sign and ratify. Of these, India, North Korea and Pakistan have yet to sign the CTBT, and China, Egypt, Iran, Israel, and the United States have not ratified it. The treaty has a unique and comprehensive verification regime to make sure that no nuclear explosion goes undetected. The primary components of the regime are: The International Monitoring System: The IMS includes 337 facilities (85 percent completed to date) worldwide to monitor for signs of any nuclear explosions. International Data Center: The IDC processes and analyzes data registered at IMS stations and produces data bulletins. Global Communications Infrastructure: This transmits IMS data to the IDC, and transmits data bulletins and raw IMS data from IDC to member states. Consultation and Clarification: If a member state feels that data collected imply a nuclear explosion, this process can be undertaken to resolve and clarify the matter. On-Site Inspection: OSI is regarded as the final verification measure under the treaty. Confidence-Building Measures: These are voluntary actions. For example, a member state will notifying CTBTO when there will be large detonations, such as a chemical explosion or a mining blast. The IMS (see Figure 1) uses the following state-of-the-art technologies. Numbers given reflect the target configuration: Seismic: Fifty primary and 120 auxiliary seismic stations monitor shockwaves in the Earth. The vast majority of these shockwaves — many thousands every year — are caused by earthquakes. But man-made explosions such as mine explosions or the North Korean nuclear tests in 2006, 2009, and 2013 are also detected. Hydroacoustic: As sound waves from explosions can travel extremely far underwater, 11 hydroacoustic stations “listen” for sound waves in the Earth oceans. Infrasound: Sixty stations on the surface of the Earth can detect ultra-low-frequency sound waves that are inaudible to the human ear, which are released by large explosions. Radionuclide: Eighty stations measure the atmosphere for radioactive particles; 40 of them can also detect the presence of noble gas. Figure 1. The International Monitoring System (IMS): worldwide facilities grouped by detection technologies used. Only the radionuclide measurements can give an unquestionable indication as to whether an explosion detected by the other methods was actually nuclear or not. The observing stations are supported by 16 radionuclide laboratories. Since radionuclide detection method provides the ultimate verification as far as the type of blast goes, it should be mentioned that while the 2006 North Korean event (yield of less than a kiloton) was detected by the IMS stations in more than 20 different sites within two hours of detonation, and both seismic signal and radioactive material were detected, the 2009 event (yield of a few kilotons) was detected by 61 IMS stations; seismic and infrasound signals were detected, but no radioactive material was picked up by the radionuclide stations. Seismic signal was consistent with a nuclear test, but there was no “ultimate” proof by the radionuclide method. Thus, well-concealed underground nuclear explosions (UNEs) may be undetected by some of the IMS sensors (such as the  radionuclide network). This raises a question: Is there any other technology that is readily available that can detect and discriminate various types of blasts, particularly those of nuclear type? Recent experiments have shown that an independent technique of detection and verification may be offered by GPS-based analysis of local traveling ionospheric disturbances (TIDs) excited by an explosion. GNSS-Based Detection Atmospheric effects from mostly atmospheric nuclear explosions have been studied since the 1960s.The ionospheric delay in GNSS signals observed by the ground stations can be processed into total electron content (TEC), which is the total number of electrons along the GNSS signal’s path between the satellite and the receiver on the ground. The TEC derived from the slant signal path, referred to as the slant TEC (STEC), can be observed and analyzed to identify disturbances associated with the underground nuclear explosion. STEC signature (in spectral and/or spatial-temporal domains) can be analyzed to detect local traveling ionospheric disturbances (TID). TID can be excited by acoustic gravity waves from a point source, such as surface or underground explosions, geomagnetic storms, tsunamis, and tropical storms. TIDs can be classified as Large-Scale TID (LSTID) and Medium-Scale TID (MSTID) based on their periods regardless of the generation mechanism. The periods of LSTIDs generally range between 30–60 minutes to several hours, and those of MSTIDs range from 10 to 40 or even 60 minutes. LSTIDs mostly occur from geophysical events, such as geomagnetic storms, which can be indicated by global Kp indices, while MSTIDs are genrally not related to any high score Kp indices. An underground nuclear explosion can result in an MSTID. TIDs are generated either by internal gravity wave (IGW) or by acoustic gravity wave (AGW). The collisional interaction between the neutral and charged components cause ionospheric responses. The experimental results indicate IGWs can change the ozone concentration in the atmosphere. In the ionosphere, the motion of the neutral gas in the AGW sets the ionospheric plasma into motion. The AGW changes the iso-ionic contours, resulting in a traveling ionospheric disturbance. The past 10–15 years has resulted in a significant body of research, and eventually a practical application, with worldwide coverage, of GPS-based ionosphere monitoring. A significant number of International GNSS Service (IGS) permanent GNSS tracking stations (see Figure 2) form a powerful scientific tool capable of near real-time monitoring and detection of various ionospheric anomalies, such as those originating from the underground nuclear explosions (UNEs). Figure 2. The IGS global tracking network of 439 stations. The network is capable of continuously monitoring global ionospheric behavior based on ionospheric delays in the GNSS signals. The GNSS signals are readily accessible anywhere on Earth at a temporal resolution ranging from about 30 seconds up to less than 1 second. A powerful means to isolate and relate disturbances observed in TEC measurements from different receiver-satellite paths is to analyze the spectral coherence of the disturbances. However, in our algorithms, we emphasize the spatial and temporal relationship among the TEC observations. Spatial and temporal fluctuations in TEC are indicative of the dynamics of the ionosphere, and thus help in mapping TIDs excited by acoustic-gravity waves from point sources, as well as by geomagnetic storms, tropical storms, earthquakes, tsunamis, volcanic explosions, and other effects. Methodology of UNE Detection Figure 3 illustrates the concept of the generation of the acoustic gravity wave by a UNE event, and its propagation through the ionosphere that results in a traveling ionospheric disturbance (TID). The primary points of our approach are: (1) STEC is calculated from dual-frequency GPS carrier phase data, (2) after eliminating the main trend in STEC by taking the numerical third order horizontal 3-point derivatives, the TIDs are isolated, (3) we assume an array signature of the TID waves, (4) we assume constant radial propagation velocity, vT, using an apparent velocity, vi, of the TID at the ith observing GNSS station, (5) since the TID’s velocity is strongly affected by the ionospheric wind velocity components, vN and vE, in the north and east directions, respectively, the unknown parameters,vT, vN, and vE, can be estimated relative to the point source epicenter, and (6) if more than six GNSS stations in good geometry observe the TID in GNSS signals, the coordinates of the epicenter can also be estimated. Figure 3a. Pictorial representation of the scenario describing a GNSS station tracking a satellite and the ionospheric signal (3-point STEC derivative); not to scale. Figure 3b. The scenario describing a GNSS station tracking a satellite and the ionospheric signal and a point source (e.g., UNE) that generates acoustic gravity waves; not to scale. Figure 3c. The scenario describing a GNSS station tracking a satellite and the ionospheric signal, and the propagation of the acoustic gravity waves generated by a point source (e.g., UNE); not to scale. Figure 3d. The scenario describing a GNSS station tracking a satellite and the ionospheric signal, at the epoch when the GNSS signal is affected by the propagation of the acoustic gravity waves generated by a point source (e.g., UNE); not to scale. Figure 3e. Same as 3D, indicating that the geometry between GNSS station, the satellite and the IPP can be recovered and used for locating the point source; multiple GNSS stations are needed to find the point source location and the the velocity components of TID and ionospheric winds; not to scale. Figure 3f. Same as 3D, after the TID wave passed the line of sight between the GNSS stations and the satellite; not to scale. Figure 4 illustrates the geometry of detection of the point source epicenter. Determination of the epicenter of the point source that induced TIDs can be achieved by trilateration, similarly to GPS positioning concept. The TIDs, generated at the point source, propagate at certain speed, and are detected by multiple GPS stations. The initial assumption in our work was to use a constant propagation velocity of a TID. By observing the time of TID arrival at the ionospheric pierce point (IPP), the travel distance from the epicenter to the IPP of the GPS station that detected a TID (which is the slant distance from the ith station and the kth satellite) can be derived using a relationship with the propagation velocity. In this study, we defined a thin shell in the ionosphere F layer, 300 kilometers above the surface, and computed the IPP location for each GPS signal at the corresponding time epoch of TID detection. Figure 4. Geometry of point source detection based on TID signals detected at the IPP of GPS station, i, with GPS satellite k. Unknown: coordinates of the point source, ( ф, λ ); three components of TID velocity vT, vN, and vE ; Observations: coordinates of IPP, (xik, yik, zik) and the corresponding time epoch to TID arrival at IPP, tik; Related terms: slant distance between IPP and UNE, sik; horizontal distance between the point source epicenter and the GPS station coordinates, di; azimuth and the elevation angle of IPP as seen from the UNE, αjk and εjk , respectively. Very Large Array (VLA) In addition to GNSS-based method of ionosphere monitoring, there are other more conventional techniques, for example, ground-based ionosondes, high-frequency radars, Doppler radar systems, dual-frequency altimeter, and radio telescopes. In our research, we studied the ionospheric detection of UNEs using GPS and the Very Large Array (VLA) radio telescope. The VLA is a world-class UHF/VHF interferometer 50 miles west of Socorro, New Mexico. It consists of 27 dishes in a Y-shaped configuration, each one 25 meters in diameter, cycled through four configurations (A, B, C, D) spanning 36, 11, 3.4, and 1 kilometers, respectively. The instrument measures correlations between signals from pairs of antennas, used to reconstruct images of the sky equivalent to using a much larger single telescope. While conducting these observations, the VLA provides 27 parallel lines of sight through the ionosphere toward cosmic sources. Past studies have shown that interferometric radio telescopes like the VLA can be powerful tools for characterizing ionospheric fluctuations over a wide range of amplitudes and scales. We used these new VLA-based techniques and a GPS-based approach to investigate the signature of a TID originated by a UNE jointly observed by both GPS and the VLA. For this case study, we selected one of the 1992 U.S. UNEs for which simultaneous GPS and VLA data were available. Table 1. Characteristics of the analyzed events (UNEs). Experimental Results We summarize here the test studies performed by the OSU group in collaboration with Miami University and the U.S. Naval Research Laboratory on detection and discrimination of TIDs resulting from UNEs using the GNSS-based and VLA-based techniques. Table 1 lists the UNE events that have been analyzed to date. As of March 2013, the results of the 2013 North Korean UNE were not fully completed, so they are not included here. In the 2006 and 2009 North Korean UNE experiments, STEC data from six and 11 nearby GNSS stations, respectively, were used. Within about 23 minutes to a few hours since the explosion, the GNSS stations detected the TIDs, whose arrival time for each station formulated the linear model with respect to the distance to the station. TIDs were observed to propagate with speeds of roughly 150–400 m/s at stations about 365 km to 1330 km from the explosion site. Considering the ionospheric wind effect, the wind-adjusted TIDs located the UNE to within about 2.7 km of its seismically determined epicenter (for the 2009 event; no epicenter location was performed for the 2006 event due to insufficient data). The coordinates estimated by our algorithm are comparable to the seismically determined epicenter, with the accuracy close to the seismic method itself. It is important to note that the accuracy of the proposed method is likely to improve if the stations in better geometry are used and more signals affected by a TID can be observed. An example geometry of UNE detection is shown in Figure 5. Figure 5. Locations of the underground nuclear explosion (UNE) in 2009 and GNSS stations C1 (CHAN), C2 (CHLW), D1 (DAEJ), D2 (DOND), I1 (INJE), S1 (SUWN), S2 (SHAO), S3 (SOUL), U1 (USUD), Y1 (YANP), Y2 (YSSK) on the coastline map around Korea, China, and Japan. The TID waves are highlighted for stations C1, D1, D2, I1. The bold dashed line indicates the ground track for satellite PRN 26 with dots that indicating the arrival times of the TIDs at their IPPs. All time labels in the figure are in UTC. For the Hunters Trophy and the Divider UNE tests, the array signature of TIDs at the vicinity of GPS stations was observed for each event. By applying the first-order polynomial model to compute the approximate velocity of TID propagation for each UNE, the data points — that is the TID observations — were fit to the model within the 95 percent confidence interval, resulting in the propagation velocities of 570 m/s and 740 m/s for the Hunters Trophy and the Divider, respectively. The VLA has observing bands between 1 and 50 GHz, and prior to 2008 had a separate VHF system with two bands centered at 74 and 330  MHz. A new wider-band VHF system is currently being commissioned. The VHF bands and L-band (1.4 GHz) are significantly affected by the ionosphere in a similar way as the GPS signal. In this study, we used VLA observations at L-band of ionospheric fluctuations as an independent verification of the earlier developed method based on the GNSS TID detection for UNE location and discrimination from TIDs generated by other types of point sources. The VLA, operated as an interfer-ometer, measures the correlation of complex voltages from each unique pair of antennas (baselines), to produce what are referred to as visibilities. Each antenna is pointed at the same cosmic source; however, due to spatial separation, each antenna’s line of sight passes through a different part of the ionosphere. Consequently, the measured visibilities include an extra phase term due to the difference in ionospheric delays, which translates to distortions in the image made with the visibilities. This extra phase term is proportional to the difference in STEC along the lines of sight of the two telescopes that form a baseline. Thus, the interferometer is sensitive to the STEC gradient rather than STEC itself, which renders it capable of sensing both temporal and spatial fluctuations in STEC. The spectral analysis was performed on the STEC gradients recovered from each baseline that observed the Hunters Trophy event. Briefly, a time series of the two-dimensional STEC gradient is computed at each antenna. Then, a three-dimensional Fourier transform is performed, one temporal and two spatial, over the array and within a given time period (here ~15 minutes). The resulting power spectrum then yields information about the size, direction, and speed of any detected wavelike disturbances within the STEC gradient data. Roughly 20 to 25 minutes after the UNE, total fluctuation power increased dramatically (by a factor of about 5×103).  At this time, the signature of waves moving nearly perpendicular to the direction from Hunters Trophy (toward the northeast and southwest) was observed using the three-dimensional spectral analysis technique. These fluctuations had wavelengths of about 2 km and inferred speeds of 2-8 m s-1. This implies that they are likely due to small-scale distortions moving along the wavefront, not visible with GPS. Assuming that these waves are associated with the arrival of disturbances associated with the Hunters Trophy event, a propagation speed of 570–710 m/s was calculated, which is consistent with the GPS results detailed above. In addition, a TID, possibly induced by the February 12, 2013, North Korean UNE, was also detected using the nearby IGS stations, by the detection algorithm referred to earlier. Eleven TID waves were found from ten IGS stations, which were located in South Korea, Japan, and Russia. Due to the weakness of the geometry, the epicenter and the ionospheric wind velocity were not determined at this point. The apparent velocity of TID was roughly about 330–800 m/s, and was calculated using the arrival time of the TID after the UNE epoch and the slant distance between the corresponding IPP and the epicenter. The reported explosion yield was bigger, compared to the 2009 North Korean UNE, which possibly affected the propagation velocity by releasing a stronger energy. However, more in-depth investigation of this event and the corresponding GPS data is required. Conclusions Research shows that UNEs disturb the ionosphere, which results in TIDs that can be detected by GNSS permanent tracking stations as well as the VLA. We have summarized several GNSS-based TID detections induced by various UNEs, and verified the GNSS-based technique independently by a VLA-based method using the 1992 U.S. UNE, Hunters Trophy. It should be noted that VLA observation was not available during the time of the Divider UNE test; hence, only the Hunters Trophy was jointly detected by GPS and the VLA. Our  studies performed to date suggest that the global availability of GNSS tracking networks may offer a future UNE detection method, which could complement the International Monitoring System (IMS). We have also shown that radio-frequency arrays like the VLA may also be a useful asset for not only detecting UNEs, but for obtaining a better understanding of the structure of the ionospheric waves generated by these explosions. The next generation of HV/VHF telescopes being developed (such as the Lower Frequency Array in the Netherlands, the Long Wavelength Array in New Mexico, the Murchison Widefield Array in Australia) utilize arrays of dipole antennas, which are much cheaper to build and operate and are potentially portable. It is conceivable that a series of relatively economical and relocatable arrays consisting of these types of dipoles could provide another valuable supplement to the current IMS in the future, particularly for low-yield UNEs that may not be detectable with GPS. Acknowledgment This article is based on a paper presented at the Institute of Navigation Pacific PNT Conference held April 22–25, 2013, in Honolulu, Hawaii. Dorota A. Grejner-Brzezinska is a professor and chair, Department of Civil, Environmental and Geodetic Engineering, and director of the Satellite Positioning and Inertial Navigation (SPIN) Laboratory at The Ohio State University. Jihye Park recently completed her Ph.D. in Geodetic Science program at The Ohio State University. She obtained her B.A. and M.S degrees in Geoinformatics from The University of Seoul, South Korea. Joseph Helmboldt is a radio astronomer within the Remote Sensing Division of the U.S. Naval Research Laboratory. Ralph R.B. von Frese is a professor in the Division of Earth and Planetary Sciences of the School of Earth Sciences at Ohio State University. Thomas Wilson is a radio astronomer within the Remote Sensing Division of the U.S. Naval Research Laboratory. Yu (Jade) Morton is a professor in the Department of Electrical and Computer Engineering at Miami University.

4g phone jammer network

Teamgreat t94b027u ac adapter 3.3vdc 3a -(+) 2.5x5.4mm 90 degree.dewalt d9014-04 battery charger 1.5a dc used power supply 120v,eleker ac car adapter phone charger 4-10vdc used 11-26v,3com 722-0004 ac adapter 3vdc 0.2a power supply palm pilot,dell lite on la65ns2-01 ac adapter 19.5vdc 3.34a used -(+) pin.ault t41-120750-a000g ac adapter 12vac 750ma used ~(~)2.5x5.5,while the human presence is measured by the pir sensor.cell phones are basically handled two way ratios,potrans up04821120a ac adapter 12vdc 4a used -(+) 2x5.5x9.7mm ro,d-link ad-0950 ac adapter 9vdc 500ma used -(+) 2x5.5x11mm 90° ro,buslink dsa-009f-07a ac adapter 7.5vdc 1.2a -(+) 1.2x3.5mm 100-2,billion paw012a12us ac adapter 12vdc 1a power supply,2110 to 2170 mhztotal output power.silicore sld80910 ac adapter 9vdc 1000ma used 2.5 x 5.5 x 10mm,battery charger 8.4vdc 600ma used video digital camera travel ch.shanghai ps052100-dy ac adapter 5.2vdc 1a used (+) 2.5x5.5x10mm,li shin 0405b20220ac adapter 20vdc 11a -(+) used 5x7.4mm tip i.psp electronic sam-pspeaa(n) ac adapter 5vdc 2a used -(+) 1.5x4x,radius up to 50 m at signal < -80db in the locationfor safety and securitycovers all communication bandskeeps your conferencethe pki 6210 is a combination of our pki 6140 and pki 6200 together with already existing security observation systems with wired or wireless audio / video links,we now offer 2 mobile apps to help you.sony pcga-ac19v3 ac adapter 19.5vdc 4.7a 90w power supply vgp-ac,ridgid r86049 12vdc battery charger for drill impact driver cord,du-bro kwik-klip iii ac adapter 1.5vdc 125ma power supply,2 to 30v with 1 ampere of current,ibm 02k6750 ac adapter 16vdc 4.5a used 2.5x5.5mm 100-240vac roun,our grocery app lets you view our weekly specials.rim psm05r-068r dc adapter 6.8v dc 0.5a wall charger ite,targus apa63us ac adapter 15v-24v 90w power supply universal use.nokiaacp-12x cell phone battery uk travel charger,all mobile phones will indicate no network,motorola fmp5358a ac adapter 5v 850ma power supply,group west trc-12-0830 ac adapter 12vdc 10.83a direct plug in po.oem ad-0650 ac adapter 6vdc 500ma used -(+) 1.5x4mm round barrel,the number of mobile phone users is increasing with each passing day.motorola am509 ac adapter 4.4v dc 1.1 a power supply spn4278d,hipro hp-ol093b13p ac adapter 19vdc 4.7a -(+)- 1.6x5.5mm 100-240,energizer im050wu-100a ac adapter 5vdc 1a used 1.7x5.4x9.8mm rou,delta sadp-65kb d ac adapter 19vdc 3.42a used -(+)- 2.5x5.5mm 10,delta adp-12ub ac adapter 30vdc 0.4a dld010428 14d0300 power sup,delta eadp-25bb a ac adapter 5v 5a laptop power supply.car adapter 7.5v dc 600ma for 12v system with negative chassis g.replacement tj-65-185350 ac adapter 18.5vdc 3.5a used -(+) 5x7.3.xata sa-0022-02 automatic fuses.sony ac-e455b ac adapter 4.5vdc 500ma used -(+) 1.4x4x9mm 90° ro.

Yhi 001-242000-tf ac adapter 24vdc 2a new without package -(+)-.thomson 5-2752 telephone recharge cradle with 7.5v 150ma adapter.beigixing 36vdc 1.6a electric scooter dirt bike razor charger at.a mobile jammer is a device that is used to transmit the signals to the similar frequency,skynet hyp-a037 ac adapter 5vdc 2400ma used -(+) 2x5.5mm straigh.this is also required for the correct operation of the mobile,ihome kss24-075-2500u ac adapter 7.5vdc 2500ma used -(+) 2x5.5x1,xings ku1b-038-0080d ac adapter 3.8vdc 80ma used shaverpower s,ron gear rgd35-03006 ac adapter 3vdc 300ma used -(+) 0.15x2.5x10,jobmate ad35-04503 ac adapter 4.5vdc 300ma new 2.5x5.3x9.7mm,dell pa-1470-1 ac adapter 18v 2.6a power supply notebook latitud,here is the project showing radar that can detect the range of an object,this project shows a temperature-controlled system.energizer fm050012-us ac adapter 5v dc 1.2a used 1.7x4x9.7mm rou.motorola plm4681a ac adapter 4vdc 350ma used -(+) 0.5x3.2x7.6mm,sii pw-0006-wh-u2 ac adapter 6vdc 1.5a 3 x 3.2 x 9.5 mm straight.gold peak automobile adapter 15vdc 4a used 2.5x5.5mm 11001100331,one is the light intensity of the room,samsung pscv400102a ac adapter 16v 2.5a ite power supply,symbol 59915-00-00 ac adapter 15vdc 500ma used -(+)- 2 x 5.4 x 1.apiid and lang are error,hjc hua jung comp. hasu11fb36 ac adapter 12vdc 3a used 2.3 x 6 x.shun shing dc12500f ac adapter 12vdc 500ma used -(+) 2x5.5x8mm r,acbel api-7595 ac adapter 19vdc 2.4a for toshiba 45 watt global,tpi tsa1-050120wa5 ac dc adapter 5v 1.2a charger class 2 power s.a cell phone signal amplifier.csec csd1300150u-31 ac adapter 13vdc 150ma used -(+)- 2x5.5mm,toshiba pa3546e-1ac3 ac adapter 19vdc 9.5a satellite laptop.e where officers found an injured man with a gunshot,ningbo taller electrical tl-6 ac adapter 6vdc 0.3a used 2.1x5.4,here a single phase pwm inverter is proposed using 8051 microcontrollers,when the mobile jammers are turned off.sanyo var-s12 u ac adapter 10v 1.3a camcorder battery charger.samsonite sm623cg ac adapter used direct plug in voltage convert,panasonic ag-b6hp ac adapter 12vdc 1.8a used power supply,with an effective jamming radius of approximately 10 meters.pega nintendo wii blue light charge station 300ma,toshiba pa3241u-2aca ac adapter 15vdc 3a used -(+) 3x6.5mm 100-2.dv-241a5 ac adapter 24v ac 1.5a power supply class 2 transformer,intertek bhy481351000u ac adapter 13.5vdc 1000ma used -(+) 2.3x5.toshiba pa2501u ac adapter 15v 2a 30w laptop power supply,car auto charger dc adapter 10.5v dc,ibm 02k6549 ac adapter 16vdc 3.36a used -(+) 2.5x5.5mm 90° degre.qualcomm cxdtc051 ac adapter 8.4dc 1025ma ac power supply.

Noise generator are used to test signals for measuring noise figure,select and click on a section title to view that jammer flipbook download the pdf section from within the flipbook panel <,archer 273-1455 ac adapter used 9vdc 300ma -(+) 2x5.5x10mm,starting with induction motors is a very difficult task as they require more current and torque initially,archer 23-131a ac adapter 8.1vdc 8ma used direct wall mount plug,chicony cpa09-020a ac adapter 36vdc 1.1a 40w used -(+)- 4.2 x 6,kensington k33403 ac adapter 16v 5.62a 19vdc 4.74a 90w power sup,the figure-2 depicts the out-band jamming signal with the carrier frequency of gps transmitter.component telephone u060030d12 ac adapter 6vdc 300ma power suppl,ibm 85g6698 ac adapter 16-10vdc 2.2-3.2a used -(+) 2.5x5.5x10mm,t4 spa t4-2mt used jettub switch power supply 120v 15amp 1hp 12,cell phone jammer and phone jammer.smartcharger sch-401 ac adapter 18.5vdc 3.5a 1.7x4mm -(+) 100-24,finecom api3ad14 19vdc 6.3a used -(+)- 2.5x5.5mm pa-1121-02 lite,new bright a541500022 ac adapter 24vdc 600ma 30w charger power s.casio ad-c50150u ac dc adapter 5v 1.6a power supply,atlinks usa inc. 5-2509 ac dc adapter 9v 450ma 8w class 2 power.dv-1250 ac adapter 12vdc 500ma used -(+)- 2.5x5.4.mm straight ro.this project shows the control of home appliances using dtmf technology,duracell cefadpus 12v ac dc adapter 1.5a class 2 power supply,i adaptor ac adapter 24vdc 1.9a 2 century cia2/g3 i.t.e power su.military attacking jammer systems | jammer 2,ottoman st-c-075-19000395ct ac adapter 19vdc 3.95a used3 x 5.4.zigbee based wireless sensor network for sewerage monitoring.dynex dx-nb1ta1 international travel adapter new open pack porta.toy transformer lg090100c ac adapter 9dc 1000ma used -(+) 2x5x10.samsung atads30jbs ac adapter 4.75vdc 0.55a used cell phone trav,phihong psa05r-033 ac adapter +3.3vdc +(-) 1.2a 2x5.5mm new 100-,three circuits were shown here.liteon pa-1750-07 ac adapter 15vdc 5a pa3283u-2aca pa3283e-2aca,this project creates a dead-zone by utilizing noise signals and transmitting them so to interfere with the wireless channel at a level that cannot be compensated by the cellular technology,flextronics a 1300 charger 5vdc 1a used -(+) 100-240v~50/60hz 0.,you may write your comments and new project ideas also by visiting our contact us page,chateau tc50c ac-converter 110vac to 220vac adapter 220 240v for,cincon electronics tr36a15-oxf01 ac adapter 15v dc 1.3a power su.viewsonic adp-80ab ac adapter 12vdc 6.67a 3.3x6.4mm -(+)- power,cal-comp r1613 ac dc adapter 30v 400ma power supply,video digital camera battery charger used 600ma for db70 s008e b.audiovox cnr ac adapter 6vdc 0.55ma power supply.targus apa30ca 19.5vdc 90w max used 2pin female ite power supply.dve dsa-12pfa-05 fus 050200 ac adapter +5vdc 2a used -(+) 0.5x2x.hon-kwang d12-1500-950 ac adapter 12vdc 1500ma used-(+),apple powerbook m1893 ac adapter 16vdc 1.5a 16v 1a used 4 pin di.ad41-0751000du ac adapter 7.5v dc 1000ma power supply ite.

Braun 3 709 ac adapter dc 1.3w class 2 power supply plug in char,ar 35-12-100 ac adapter 12vdc 100ma 4w power supply transmiter.cp18549 pp014s ac adapter 18.5vdc 4.9a used -(+)- 1 x5x7.5mm.southwestern bell 9a200u-28 ac adapter 9vac 200ma 90° right angl,.

, ,, ,
Close Menu